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Abstract

This thesis describes how Monte-Carlo Tree
Search (MCTS) can be applied to perform tac-
tical planning for an intelligent agent playing
full games of StarCraft: Brood War. StarCraft
is a Real-Time Strategy game, which has a large
state-space, is played in real-time, and com-
monly features two opposing players, capable
of acting simultaneously. Using the MCTS al-
gorithm for tactical planning is shown to in-
crease the performance of the agent, compared
to a scripted approach, when competing on a
bot ladder. A combat model, based on Lanch-
ester’s Square Law, is described, and shown to
achieve another gain in performance when used
in Monte-Carlo simulations as replacement for
a heuristic linear model. Finally, the MAST
enhancement to the Playout Policy of MCTS is
described, but it is found not to have a signifi-
cant impact on the agent’s performance.
Keywords: StarCraft, Monte-Carlo Tree
Search, Lanchester’s Square Law.

1 Introduction
This section first provides background information on
the Real-Time Strategy (RTS) game genre, and Artificial
Intelligence (AI) research in this game genre. Next, the
problem statement and research questions that the thesis
aims to address are given. An overview of the remainder
of the thesis concludes the section.

1.1 Background

RTS is a genre of games in which players control mili-
tary units and bases in a real-time environment with the
overall goal to destroy all units and buildings controlled
by the opponents. Players typically start with a small
number of worker units, which are capable of gathering
resources and building buildings, and a single building.
RTS games are generally played on a 2-dimensional map,

1This thesis has been prepared in partial fulfillment of the re-
quirements for the Degree of Bachelor of Science in Knowledge En-
gineering, Maastricht University, supervisor: Dr. Mark Winands.

which can be observed from a top-down view. Players
have to find and gather resources to build bases and
armies. The military units in these armies can be con-
trolled individually, and properly doing so helps to win
battles.

RTS games have a number of properties that make
them notoriously challenging for agents to play, and
make it infeasible to use standard AI techniques known
from abstract games, such as game-tree search algo-
rithms. Because the games run in real-time, decisions
have to be made quickly, otherwise the information on
which decisions are based may turn out to be outdated.
RTS games also typically have two sources of uncer-
tainty. Firstly, unexplored regions of the map are invisi-
ble (hidden by the “Fog of War”), meaning that players
have imperfect information. Secondly, combat-related
actions can be non-deterministic (for instance, shooting
units can have a chance to miss their shots). The fact
that all players are able to continuously act at the same
time, and the fact that many actions are durative (mean-
ing that actions take some time to complete), makes it
quite difficult to construct a game tree. Finally, RTS
games tend to have a state space many orders of magni-
tude larger than board games such as Chess or Go.

Current approaches to RTS game AI involve decom-
posing the gameplay in a number of smaller subproblems
with different levels of abstraction, and addressing each
subproblem individually [1]. One of the subproblems
commonly identified is that of tactical decision-making.
Tactical decisions, which have to be made in RTS games
are, for instance, deciding from which route or angle to
attack an opposing army, or where to hide and wait in
order to ambush opponents. Tactical decision-making
does not concern the actions of individual units in a fight
(which is commonly referred to as reactive control [1]).
It also does not involve higher level decisions, such as
deciding how many of which unit types to compose an
army of. Those kinds of decisions are typically referred
to as strategic reasoning.

There has been some research into simulation-based
approaches to tactical planning in small scenarios based
on RTS games. Chung et al. [2] presented a Monte-Carlo
planning framework for tactical planning and tested it in
a capture-the-flag variant of an RTS game implemented
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using the ORTS framework [3]. Sailer et al. [4] used a
simulation-based planning framework for army deploy-
ment in some custom RTS scenarios. Balla and Fern [5]
applied the Monte-Carlo Tree Search (MCTS) algorithm
[6, 7] to make tactical assault decisions in the RTS game
Wargus. Bowen et al. [8] continued their work by us-
ing MCTS for tactical groupings in StarCraft. Churchill
and Buro [9] applied MCTS to the lower-level control
of individual units in combat, but found it to be out-
performed by a novel search algorithm named Portfolio
Greedy Search.

1.2 Problem Statement and Research
Questions

Existing work [5] shows that simulation-based search al-
gorithms, like the MCTS algorithm, work well for tacti-
cal planning in isolated RTS scenarios. They have also
been shown to be successfully applicable in several board
games, such as Go [10]. They have not yet been proven to
function well in the context of a full RTS game though,
which brings us to the problem statement: “How can
MCTS be applied to successfully handle tactical planning
problems in an intelligent agent playing complete RTS
games?” This problem statement involves the following
three research questions:

1. How can MCTS be adapted to reason about the
durative actions available in an RTS game?

2. How can MCTS perform adequately, with respect to
both quality of plans constructed and running time,
in a real-time setting?

3. How does MCTS compare to other proposed solu-
tions for tactical planning?

To answer these three questions, an intelligent agent
has been developed to play the RTS game StarCraft:
Brood War. This agent uses a MCTS algorithm for its
tactical planning.

1.3 Overview
The thesis is structured as follows. Section 2 provides
a description of the game StarCraft: Brood War. The
section also describes how the game has been used in the
past for RTS game AI research. In Section 3, the overall
software architecture of the developed agent is described.
Section 4 provides an overview of the techniques used
to implement the architecture’s modules. Section 5 de-
scribes the game state abstraction used to improve the
applicability of game tree search algorithms. Section 6
describes the MCTS algorithm and details of how it has
been implemented. In Section 7, the setup and results of
experiments which were carried out in order to answer
the research questions are described. In Section 8, con-
clusions are drawn from the research and ideas for future
research are provided.

2 StarCraft: Brood War
StarCraft: Brood War is a popular and commercially
successful RTS game, which was developed by Blizzard
Entertainment and released in 1998. A screenshot of the
game is shown in Figure 1. It is generally considered
to be a remarkably well-balanced considering the com-
plexity of the game [1]. All of the typical properties of
RTS games described in the introduction are present in
StarCraft. StarCraft is one of the most popular games
in academic RTS game AI research. The main reason
for that is the Brood War Application Programming In-
terface (BWAPI).2 BWAPI is an open source framework
that exposes information of the game state to program-
mers and allows programmers to send commands to the
game. This framework allows the programming of agents
to play the game in a fast and versatile language like
C++. StarCraft is one of, if not the, most complex, suc-
cessful and well-balanced games for which this option is
available.

Figure 1: StarCraft: Brood War

Since 2010, the AIIDE StarCraft AI Competition3

has been organized every year. Programmers can submit
their agents using the BWAPI framework to compete in
this competition. At the Computational Intelligence and
Games conference (CIG), StarCraft competitions for AI
players have been run annually since 2010 as well.4 In
addition to these competitions held at well-known sci-
entific conferences, a number of other competitions have
been held too (for instance, the Student StarCraft AI
Tournament).5 The existence of these competitions in-
dicates how popular the game is for academic game AI
research.

2https://github.com/bwapi/bwapi
3http://www.starcraftaicompetition.com
4ls11-www.cs.uni-dortmund.de/rts-competition/
5http://www.sscaitournament.com/
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Before a game starts, each player can choose one of
three races to play in that game. Those races are named
Protoss, Terran, and Zerg. Each race has different types
of units and buildings, and therefore different play styles
and strengths and weaknesses. Players start each game
with a small number of Worker units and a single Re-
source Depot. Worker units are units, which can gather
resources and construct new buildings. A Resource De-
pot is a building that can train new Worker units and is
required for Worker units to deliver the resources they
gather.

In a typical game of StarCraft, players initially focus
on gathering resources to quickly expand their economy.
They use the resources to build a base and start building
an army. Players generally also send one or a couple of
units out of the base to scout the opponent. This is done
in an attempt to gather information on the opponent’s
location and his planned strategy. Of course, players
can divert from this typical gameplay as they see fit.
For example, sometimes players focus more heavily on
building a large army quickly to surprise their opponent
with an early attack. A game of StarCraft ends once
all of the buildings a player constructed throughout the
game have been destroyed. The player with no remaining
buildings is the losing player.

The number of players that can participate in a single
game of StarCraft depends on the map that has been
chosen to play the game on, and can be as many as 8
players on the largest maps. However, in the past AI
competitions have always focused on 2 players per game
(1 versus 1), and therefore this thesis also assumes such
a match-up.

3 Agent Architecture

To answer the research questions, an agent has been de-
veloped to play full games of StarCraft. The overall soft-
ware architecture of this agent, named MaasCraft, is
shown in Figure 2. The arrows in the figure indicate the
flow of data. In some cases it is information about the
state of the game, in other cases it can be commands to
execute some task. This architecture is largely based on
architectures of participating agents in previous compe-
titions, making use of both Abstraction and Divide-and-
conquer, as described in [1].

On the highest level, two large packages can be dis-
tinguished; a package for Information and a package for
Decision-Making & Control. The arrow from StarCraft
to BWAPI indicates BWAPI receiving information on
the game state. This information is sent to the rele-
vant modules inside the Information package, where it
can be processed and stored. The Decision Making &
Control package makes decisions and sends commands
to BWAPI, which propagates them to the actual game.

Figure 2: MaasCraft’s Software Architecture

3.1 Information
First, the four modules concerning Information are dis-
cussed:

• At the beginning of a game, the Map Analyser anal-
yses available data about the map that the game is
played on. This concerns information that is known
to be always the same for a given map. For example,
the Map Analyser analyses which of the map’s tiles
are passable to determine the locations of choke-
points. Throughout the game, this information can
be used to make more intelligent decisions.

• The Base Manager keeps track of the locations
of bases which both players build throughout the
game, and which buildings have been observed in
each base.

• The Opponent Tracker stores a collection of all the
opposing units and buildings as they are observed.
It also keeps the last known state of each opposing
unit of which the agent loses vision in memory.

• The Unit Tracker keeps some organizational infor-
mation on the units controlled by MaasCraft. It
ensures that there is only ever a single module which
has full control over a given unit. This prevents a
single unit getting conflicting commands from mul-
tiple different modules.

3.2 Decision-Making & Control
Next, the modules for decision-making & control are dis-
cussed. Looking at this part of Figure 2, it should be
noted that the higher modules correspond to higher lev-
els of abstraction than the lower modules.

• On the highest level of abstraction is the Strategy
Manager. This module is responsible for choosing a
high-level strategy for the agent to play. This cor-
responds to the subproblem of strategic reasoning
mentioned in Section 1.

• The Production Manager considers the decisions of
the Strategy Manager with respect to what units

(p.3)
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and buildings have to be produced. It is in charge of
ordering these production requests. Various produc-
tion requests are initially ordered by taking into ac-
count priority levels indicated by the Strategy Man-
ager. However, the Production Manager can decide
to execute lower priority commands first if they re-
quire fewer resources. Production commands for
training new units are sent straight to BWAPI, since
they have no requirements other than resource re-
quirements and the existence of buildings which can
train those units. Production commands to con-
struct new buildings are first sent to the Building
Manager, since that manager is in charge of finding
a location where the building can be placed.

• The Army Manager is in charge of making tactical
decisions for all of the agent’s military units. Gen-
erally the military units are grouped in Squads, and
the Army Manager makes decisions for these Squads
as opposed to individual units.

• The Scout Manager is in charge of scouting inter-
esting areas of the map when the Strategy Manager
decides to perform scouting. It is linked to both
the Army Manager and the Worker Manager since
it “borrows” units from one of those managers to
use for scouting.

• The Worker Manager controls most of the agent’s
Worker units. Most of these units are gathering
resources, and the Worker Manager is in charge
of distributing them evenly over the available re-
sources nodes near the agent’s bases. When the
Scout Manager requests a Worker unit for scouting,
the Worker Manager decides which Worker unit is
currently best suited for scouting.

• The Building Manager receives commands from the
Production Manager to construct buildings. It de-
termines a location to construct this building and
propagates the command to BWAPI.

• The agent’s military units are organized in a number
of Squads. New Squads can be spawned, or exist-
ing Squads can be merged, as the Army Manager
sees fit. Each Squad receives a tactical order from
the Army Manager, and executes that by sending
commands to each of its individual units.

4 Implementation of Modules

This section briefly describes which techniques were used
to implement the modules described in Section 3 in
MaasCraft. An elaborate description of all the tech-
niques used is outside the scope of this thesis, since the
focus lies on the application MCTS to the tactical plan-
ning problem. However, since the performance of the

agent in a full game partially depends on the perfor-
mance of all other modules, a short description of their
implementation is required.

• The Map Analyser uses a number of flood fill al-
gorithms [11] to compute which of the map’s tiles
are connected to each other, and to compute each
tile’s clearance. The clearance of a tile is defined
to be the straight-line distance from that tile to the
nearest blocked tile. Local minima on the clearance
map, which satisfy a number of experimentally de-
termined heuristic conditions, are marked as choke-
points. This approach was used by the bot Skynet
in a number of previous competitions. Most other
bots used a library named Brood War Terrain An-
alyzer (BWTA)6, of which the algorithms used are
described in [12]. BWTA is no longer compatible
with the version of BWAPI used by MaasCraft,
which is the main reason for choosing to implement
the algorithm used by Skynet.

• The Strategy Manager uses a Finite State Machine
to select strategies [13]. The states are a number
of predefined strategies, and transitions depend on
important events in the game. For example, observ-
ing a building that produces invisible units causes a
transition into a strategy that produces units capa-
ble of detecting invisible units. The strategies and
the transition conditions are based on expert knowl-
edge.7

• The Production Manager sorts production com-
mands received from the Strategy Manager, treat-
ing the indicated priority levels as preferences (as
opposed to strict priorities). It means that the Pro-
duction Manager can choose to execute lower prior-
ity commands first if, for instance, those commands
require fewer resources.

• The Army Manager uses MCTS for its tactical plan-
ning and propagates the chosen actions to their re-
spective Squads. The details of this implementation
are described in Sections 5 and 6.

• The Scout Manager has a simple rule-based system
based on expert knowledge to determine scout lo-
cations. Potential fields are used to detect when
scouting units are near threatening enemy units and
force them to move back to safety.

• The Worker Manager uses a number of heuristics
based on expert knowledge7 to spread the Worker
units over nearby resource nodes and to determine
a good candidate when the Scout Manager requests
a unit to use for scouting.

6https://code.google.com/p/bwta/
7wiki.teamliquid.net/starcraft
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• The Building Manager performs a breadth-first
search to determine the next tile where a building
can be legally placed.

• Van der Sterren first described the notion of Squad
AI for combat games in both a decentralized [14]
and a centralized [15] form. MaasCraft uses a
centralized approach, where a Squad leader is not
an actual member of the Squad, but is the abstract
Army Manager. Each Squad has access to a set
of predefined behaviours and calls the appropriate
behaviour on each of its units in order to achieve
a goal formulated by the Army Manager. Combat
behaviours have been implemented using potential
fields [16, 17] for movement, and heuristics based on
domain knowledge for target selection [18].

The modules, which have not been discussed, only
store data in memory and provide some trivial function-
ality to access and modify that data.

5 Game State Abstraction

The large size and complexity of the state space of Star-
Craft make it difficult to directly apply game tree search
algorithms to the full game. Therefore, an abstraction of
the game state is presented in this section, that reduces
the complexity of the game state, at the cost of accuracy.
The abstract moves, that form the transitions between
the states, are also described in this section.

This game state abstraction is intended to be used by
some game tree search algorithm. The specific algorithm
that is used in MaasCraft is described in the next
section.

5.1 Game State

At the start of the game, a graph is built containing
nodes at each chokepoint and each potential base loca-
tion identified by the Map Analyser. This spatial ab-
straction greatly reduces the number of different loca-
tions. Assuming the Map Analyser functions adequately,
this abstraction should still contain all of the important
locations. In addition to the graph-representation of the
map, which remains constant throughout a game, the
abstraction of the game state is defined by the following
components:

• A set of allied squads SA.

• A set of allied bases BA.

• A set of enemy squads SE .

• A set of enemy bases BE .

• A set of battles B.

• A set of scheduled moves M.

Figure 3: Example Game Tree

Every squad s has a number of hit points (HP (s)),
representing how much damage it can take before all of
its units are dead, a number of damage points it can
deal per frame (DPF (s)), a maximum movement speed
(Speed(s)), and a node of the graph on which it is located
(Loc(s)). These squads represent groups of units in the
real game.

Every base b also has a number of hit points (HP (b)),
and a location (Loc(b)), but no speed or damage, because
bases are assumed not to be moveable and generally deal
no damage. In the game of StarCraft, there are some
defensive buildings that can deal damage, but these are
modelled as separate squads with a speed of 0 at the
same location as their bases.

A battle β ∈ B is characterized by a location Loc(β)
and a set of participating squads and bases on that same
location of which every element must be in SA ∪ BA ∪
SE∪BE . At any point in time during a simulation where
a node of the graph contains allied squads and/or bases,
and enemy squads and/or bases, a battle is constructed
at that node and added to B. Bases owned by a specific
player are only added as participants to the battle if that
player does not have any squads on that node. A bat-
tle, as described here, models a local fight between two
or more squads, and does not describe an entire game.
Each game of StarCraft generally has many battles.

The purpose of the set of scheduled moves M, is to
enable the algorithm to simulate simultaneous moves.
It does not only mean that the two players can move
simultaneously, but also that a single player can per-
form multiple moves simultaneously. As proposed in [5]
and described in [8], the search tree is built to contain
a number of bookkeeping nodes, where moves have been
selected but not yet executed. Following an edge in the
search tree results in choosing a move for the first idle
squad, scheduling that move for execution by adding it

(p.5)
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to M, and marking that squad as no longer being idle.
The only exception is a node in which every squad has
already been assigned an action; such a node is auto-
matically followed up by a special ResolveMoves move.
This move is not added to M, but advances to the next
game state by fully executing the shortest duration move
in M, and partially executing all other moves for that
same duration. An example game tree for two allied
squads and a single enemy squad is depicted in Figure 3.

5.2 Moves
The following moves are available for selection by the
squads in the abstract game:

• Wait(s) is available to any squad s ∈ SA∪SE that is
not a participant of any battles. It results in s sim-
ply waiting where it currently is. This move always
has a duration equal to the shortest duration of all
other moves inM, which means that squads can re-
evaluate whether they still want to continue waiting
or not in response to other squads completing their
moves.

• MoveTo(s, n) is available to any squad s ∈ SA ∪SE

that is not a participant of any battles. There is one
move of this type for each node n that is adjacent
to the current location Loc(s). The duration of this
move is given by Equation 1:

Duration(MoveTo(s, n)) =
Distance(Loc(s), n)

Speed(s)
(1)

• Fight(s) is available to any squad s ∈ SA∪SE that is
part of a battle. It indicates that s chooses to con-
tinue fighting in this battle. Its duration is equal to
the lowest value of either the duration of the bat-
tle that s participates in, or the lowest duration of
all other moves in M. This means that s can re-
evaluate whether it wants to continue fighting in re-
sponse to other moves, unless all other moves take
longer than the entire battle does.

• RetreatTo(s, n) is available to any squad s ∈ SA∪SE

that is part of a battle. There is one move of this
type for each node n that is adjacent to the current
location Loc(s) and that is not blocked by an op-
ponent of s. A node n is said to be blocked by an
opponent o if o is closer to n than s is. In order to al-
low opposing squads at the same node to block each
other, their positions are not saved as the exact po-
sition of a node, but with a slight offset towards the
edge they last traversed. This ensures that a squad
never attempts to retreat by moving through an op-
posing squad, but always retreats away from its op-
ponents. The duration is computed in the same way
as that of the MoveTo(s, n) move (see Equation 1).

5.3 Modelling Battles

Whenever squads end up participating in battles and se-
lecting the Fight move, transitioning into the next game
state requires the ability to resolve a battle for a specified
duration. To determine the duration of Fight moves, it is
also necessary to predict the maximum duration of each
battle. Two different models have been implemented and
tested in MaasCraft to perform these two tasks.

In the description of both models, A and E denote
the sets of all participating allied (A) and enemy (E)
squads. The total amount of damage per frame (DPF )
and hit points (HP ) of each set of squads is given by
Equations 2-5. Bases are treated as squads with a DPF
value of 0.

HPAllied =
∑
s∈A

HP (s) (2)

HPEnemy =
∑
s∈E

HP (s) (3)

DPFAllied =
∑
s∈A

DPF (s) (4)

DPFEnemy =
∑
s∈E

DPF (s) (5)

Modelling Battles - Heuristic Model

The first model is based on a heuristic used in [19] for
comparing the strengths of armies. It assumes that both
armies continuously deal their starting amount of DPF
to each other, until one of the armies has 0 hit points
remaining. In a true battle of StarCraft this is not the
case, because units die throughout a battle and can no
longer deal damage when they are dead, but it is a simple
heuristic and computationally inexpensive.

Simulating a battle for a duration of t frames is per-
formed as follows. Let D = t × DPFAllied denote the
total damage all allied squads can deal over a duration of
t frames. A battle is then simulated by iterating over all
enemy squads s, and subtracting min(HP (s), D) from
the squad’s hit points and from D, until either all enemy
squads have 0 hit points remaining, or D = 0. In the
same way, enemy squads also deal their damage to allied
squads.

The maximum duration of a battle is determined by
computing how much time each player requires to kill
the opposing participants, and taking the minimum of
the two;

TimeRequiredAllied =
HPEnemy

DPFAllied
(6)

TimeRequiredEnemy =
HPAllied

DPFEnemy
(7)

(p.6)
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Modelling Battles - Lanchester’s Square Law

The second model implemented is based on Lanchester’s
Square Law [20]. Lanchester’s Square Law models a bat-
tle using differential equations, that describe how the
number of units in each army changes over time. It is
intended to model modern combat with aimed fire, as
opposed to Lanchester’s Linear Law, that models clas-
sic hand-to-hand combat. See Equation 8, where m(t)
denotes the number of allied units at time t, and n(t)
denotes the number of enemy units at time t.

dm

dt
= −an, dn

dt
= −bm (8)

In this model, a indicates how many allied units each
enemy unit is expected to kill per time unit, and b is the
analogous variable for enemy units. This model is named
the square law, because doubling the initial number of
units in an army has the same effect on the end result
of the battle, as quadrupling the fighting effectiveness (a
or b) of each unit in that army.

An extension to the model, that models reinforce-
ments arriving during a battle, was described in [21].
Adding this extension results in the differential equa-
tions shown in Equation 9, where P and Q are constants
representing the number of extra units arriving to the
battle for the allied and enemy armies, respectively.

dm

dt
= P − an, dn

dt
= Q− bm (9)

The model described in Equation 9 has been imple-
mented and tested in MaasCraft. The parameters
a and b are computed as shown in Equations 10 and
11. In these equations, DPF(S) and HP(S) denote the
mean damage per frame and hit points, respectively, of
all units in the squads in S.

a =
DPF(E)

HP(A)
(10)

b =
DPF(A)

HP(E)
(11)

The variables P and Q are set to 1
Z if the respective

army has a base located at the battle location, and 0
otherwise, where Z equals the time in frames it takes to
train a Zealot8 in StarCraft. Given a point in time t,
Equations 14 and 15 provide a closed-form solution for
m(t) and n(t). Equations 12 and 13 give intermediate
results used in Equations 14 and 15.

E =
1

2

{[
m0 +

P√
ab

]
−
√
ab

b

[
n0 +

Q√
ab

]}
(12)

8The most basic unit type of the Protoss race.

F =
1

2

{√
ab

a

[
m0 +

P√
ab

]
+

[
n0 +

Q√
ab

]}
(13)

m(t) =
Q

b
+ Eet

√
ab +

√
ab

b
Fe−t

√
ab (14)

n(t) =
P

a
−
√
ab

a
Eet
√
ab + Fe−t

√
ab (15)

The variable E computed in Equation 12, which is only
dependent on the model’s initial conditions, can be used
to predict ahead of time which army wins the battle. The
allied army wins if E > 0, and the enemy army wins if
E < 0. If E = 0.0, both armies die simultaneously
according to the model.

A battle is simulated for a duration of t frames by
computing the number of units remaining in each army
using Equations 14 and 15. Then, the remaining total
HP and DPF for each squad S is re-computed by mul-
tiplying the remaining number of units by HP(S) and
DPF(S), respectively. This allows those squads to par-
ticipate in future battles in an appropriately damaged
state.

The maximum duration of a battle can be computed
as shown in Equation 18, where Equations 16 and 17
provide intermediate results dependent on the sign of E.

D =

{
P 2 + 4aEF

√
ab, E > 0

Q2 − 4bEF
√
ab, E < 0

(16)

z =

−P+
√
D

2aF , E > 0
−Q+

√
D

2F
√
ab
, E < 0

(17)

tend =
−ln(z)√

ab
(18)

In the rare cases where E = 0, tend is directly computed
using z = 0.001. This value was found to be accurate
for some cases. Whether it is possible at all to find a
constant value or a function for z, that gives accurate
results for tend in all cases where E = 0, has not been
investigated for this thesis.

6 MCTS for Tactical Planning

This section first describes Monte-Carlo Tree Search
(MCTS) in general. This is followed by a description of
the UCT algorithm, which is a specific variant of MCTS
that has been implemented in MaasCraft. Finally,
the section describes how the algorithm has been imple-
mented in MaasCraft and how it is used by the Army
Manager.

(p.7)
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6.1 Monte-Carlo Tree Search

MCTS is a family of best-first search algorithms [6, 7].
MCTS uses Monte-Carlo simulations to gradually build
a tree over the state-space. Every simulation results
in a path from the current game state (root node) to
some terminal state. Statistics of previous simulations
are used to guide the search towards the most interest-
ing parts of the tree. Typically, MCTS consists of four
different steps which are repeated for as long as a given
computational budget (such as a time constraint) allows
[22]. These four steps are depicted in Figure 4.

In the (1) Selection Step, the tree is traversed from
the root node to a leaf node. In this step, exploration of
new moves, and exploitation of moves which seem suc-
cessful so far, should be balanced. In the (2) Expansion
Step, one or more children are added to the leaf node.
In the (3) Simulation Step, a game is simulated from the
leaf node up until a terminal state is reached. Finally,
in the (4) Back-propagation Step, a reward value corre-
sponding to the terminal state that was reached is back-
propagated through the nodes along the search path.

The selection and expansion steps can be grouped in
a Tree Policy. The policy used for the simulation step is
often referred to as the Playout Policy.

6.2 UCT

In MaasCraft, the UCT algorithm [6] has been imple-
mented following the pseudocode in [10]. This variant
of the algorithm makes no assumptions with respect to
the turn order, which is important because of the real-
time and simultaneous-move nature of the problem. The
policies of MCTS mentioned above are implemented as
follows in UCT:

• Tree Policy: A node is said to be fully expanded
if and only if all of its potential children have been
added to the tree. If the current node has not been
fully expanded yet, an arbitrary child, which has not
been added yet, is selected and added to the tree.
Otherwise, the child node v’ of the current node v
that maximizes Equation 19 (based on the UCB1
policy [23]), where R(n) is the average reward value

Figure 4: The four steps of MCTS [22]

found for the node n so far, and N(n) is the number
of times a node n has been visited.

X(v′) = R(v′) + C

√
ln(N(v))

N(v′)
(19)

This formula balances exploration of nodes that
have not been visited often with exploitation of
nodes that seem rewarding. C is a parameter that
can be chosen to control this balance. Higher values
for C result in a larger amount of time spent explor-
ing (as opposed to exploiting). The exact way that
R(v′) is computed in MaasCraft is an implemen-
tation detail and therefore described in Subsection
6.4.

• Playout Policy: The most straightforward pol-
icy for simulation, is to pick a random action from
a uniform distribution over the possible actions in
each game state. This is the policy implemented in
all but one versions of MaasCraft. An enhance-
ment, that has been implemented in one version of
MaasCraft, is the Move-Average Sampling Tech-
nique (MAST) [24]. This technique saves a value
Qh(a) for every move a, which is the average of all
the rewards obtained in play-outs in which move a
occurred. The idea is that moves that were good in
one state are more likely to also be good in other
states, and should therefore be chosen more often.
As proposed in [25], the ε-greedy [26] technique is
used to select the move with the highest Qh(a) value
with probability 1−ε, and to randomly select a move
from a uniform distribution with probability ε. In
MaasCraft, ε = 0.6. This value was determined
by trial and error.

6.3 Implementation
Terminal States

In the implementation in MaasCraft, a game state is
said to be terminal if at least one of the following three
conditions holds:

1. 1440 or more frames of time have been simulated.
At 24 frames per second, which is the highest speed
available by default in StarCraft, this corresponds
to 1 minute. This means that the algorithm plans
at most 1 minute into the future.

2. All squads have selected the Wait move. Accord-
ing to the rules described in Section 5, none of the
squads are able to re-evaluate their moves at this
point, so the simulation can be terminated.

3. All squads and bases of a single player have 0 hit
points remaining. When this happens one of the
players has lost all of its forces and there is no point
in continuing the simulation.
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The reward value R for a terminal game state is com-
puted according to Equation 23, consisting of a number
of components computed in Equations 20-22.

BaseScore = ∆ |BA| −∆ |BE | (20)

where ∆ denotes the change in the quantity from the
start state to the terminal state.

HpScore =
TotalHP end

Allied

TotalHP start
Allied

−
TotalHP end

Enemy

TotalHP start
Enemy

(21)

DistanceScore =

ε
∑
s∈SA

[ ∑
b∈BA

Distance(s, b)−
∑
b∈BE

Distance(s, b)

]
(22)

R = BaseScore+HpScore+DistanceScore (23)

The BaseScore computed in Equation 20 gives a reward
of 1 for every enemy base destroyed, and deducts 1 for
every allied base lost. This means that this component
of the score lies in [−m,n], where m and n denote the
number of allied and enemy bases, respectively, at the
start of the simulation.

The HpScore computed in Equation 21 gives a re-
ward in [−1, 1] depending on the total hit points the
armies of both players have remaining.

The DistanceScore computed in Equation 22 re-
wards squads for moving away from allied bases and to-
wards opposing bases. The parameter ε should be chosen
to be small (in MaasCraft, ε = 10−6), to ensure that
the BaseScore and HpScore is given a larger weight.
The DistanceScore is, in essence, only used as a tie-
breaker for simulations where no battles occurred. Be-
cause MaasCraft, as of the time of this writing, only
has a small selection of early aggressive strategies im-
plemented, it is generally beneficial to move aggressively
towards the enemy bases.

UCT’s C parameter

The C parameter used by UCT (see Equation 19) is set
to a constant value of 1.5

√
2, chosen by hand-tuning.

The C parameter should be correlated to the range in
which a final state’s reward value R (Equation 23) can
lie. This range is dominated by the BaseScore value,
which contributes −1 to the lower bound for each allied
base and 1 to the upper bound for each enemy base, and
the HpScore, which lies in [−1, 1].

Ideally, the C parameter should scale with the range
in which the reward values can lie, or the reward values
should be normalized to a constant range. Considering
MaasCraft’s current focus on early-game strategies,

most games in which the bot participates have a rela-
tively small number of bases, which means that the range
of reward values ends up fairly small and consistent in
practice. For this reason, no effort has been put into
perfecting the value of the C parameter yet.

Interface to Army Manager

MaasCraft’s Army Manager initializes a new UCT
search every 15 frames. Whenever a new search is ini-
tialized, an abstraction of the game state is constructed
at the root node to represent the true game state as
accurately as possible. To do so, the DBSCAN cluster-
ing algorithm [27] is used to cluster units into squads
based on proximity (the specific choice of clustering al-
gorithm should not matter much). Allied squads require
at least two units close to each other; loose units that
are not assigned to squads are not considered by UCT,
but are instead directly instructed to move towards the
closest squad. This is done because a single unit in Star-
Craft is rarely able to accomplish much on its own. En-
emy squads are allowed to consist of only a single unit
though. This allows the algorithm to recognize when
the opponent left a single unit vulnerable and exploit
the situation by attacking with a larger squad.

During each frame, the algorithm is allowed to run for
30 milliseconds. This leaves sufficient time available per
frame for all the other modules to perform their tasks
and ensure the agent does not exceed the limit of 42
milliseconds per frame enforced by the competition rules
of the AIIDE and CIG competitions.

New moves based on the search results are only se-
lected and executed at the end of each round of 15
frames, right before a new search is initialized. It means
that the selected moves in the true game are based on
slightly outdated information, and the agent requires a
period of at least 15 frames to change its tactics based
on new information. Because the algorithm is only used
for larger scale tactical decisions (as opposed to, for in-
stance, directly controlling individual units in combat),
this turns out to be acceptable in practice.

The output expected from the algorithm is a Wait
or Move command for every allied squad that is not cur-
rently in combat, and a Fight or Retreat command for ev-
ery allied squad that is currently in combat. This results
in the Army Manager moving groups of units around the
map, attempting to maximize the score given by Equa-
tion 23 it expects to be capable of achieving 1 minute
into the future.

7 Experiments

7.1 Setup

A number of different versions of MaasCraft have
been submitted to the StarCraft BroodWar Bots Lad-
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der.9 This is a website that is automatized to continu-
ously run games between BWAPI-based bots. Most of
the bots participating on the ladder have also partici-
pated in competitions, such as the ones at AIIDE and
CIG, in previous years, but there is also a number of
bots that have not been seen in previous competitions.

The website ranks bots according to an ELO rating
system [28]. The ELO rating of a bot gives an indication
of the bot’s relative performance, compared to the other
participants. The website also provides access to other
statistics, such as total win, loss, and crash percentages.

During development of the bot, a total of 12 different
versions of MaasCraft have been submitted to the lad-
der. Of four of these versions, the results are presented
in this section. The other versions only played a small
number of games, and served only for quick testing and
identifying bugs and other issues. The four versions that
played larger numbers of games and are compared in this
section are:

1. MaasCraft 0 3: This is the last version that was
submitted before development of the MCTS algo-
rithm for tactical reasoning started. Instead of
MCTS, it uses a simple scripted approach, where
the complete armies of each player are compared
directly using a heuristic. Based on this compari-
son the bot either attacks or retreats with its entire
army.

2. MaasCraft 0 7: This version uses the MCTS al-
gorithm for its tactical planning as described in Sec-
tion 5. It uses the Heuristic Model for simulating
battles in the Tree and Playout policies of MCTS.

3. MaasCraft 0 10: This version uses the MCTS
algorithm for its tactical planning as described in
Section 5. It uses the model based on Lanchester’s
Square Law for simulating battles in the Tree and
Playout policies of MCTS.

4. MaasCraft 0 12: This version is similar to
MaasCraft 0 10, but uses the MAST enhance-
ment in its playout policy, as described in Section
6.

Additionally, the same four versions have played a
number of games against the Racine AI (version 3.0.1),
which is a fully scripted AI that can be installed to re-
place the built-in AI of StarCraft. Compared to BWAPI-
based bots, this AI has less control over individual units
and therefore, in general, has a lower performance in
equal fights. However, it has perfect information and
gains free resources, meaning it generally has a stronger
army than BWAPI-based bots, which do not cheat. This
script provides a more consistent benchmark than the

9http://bots-stats.krasi0.com/

Table 1: MaasCraft Game Statistics
Version Win % Loss % Draw % Games

0 3 16.07% 76.43% 7.50% 280

0 7 30.22% 67.03% 2.75% 182

0 10 40.61% 56.85% 2.54% 197

0 12 46.41% 51.93% 1.66% 181

Table 2: MaasCraft ELO Ratings

Version ELO Peak Final ELO Date

0 3 1867 1783 22-05-2014

0 7 2009 1894 31-05-2014

0 10 2153 2028 05-06-2014

0 12 2116 2099 14-06-2014

bot ladder, on which other bots can get enabled, dis-
abled and upgraded in between experiments.

Using Racine, each of the four versions of
MaasCraft described above played a set of 4 games
versus each of the game’s 3 available races, on each of
the 10 maps used in the AIIDE 2013 competition, for a
total of 120 games per version of MaasCraft.

7.2 Results

Table 1 shows the win, loss and draw percentages and
the total number of games played for each version of
MaasCraft. Games in which MaasCraft crashed
are not included in these statistics. In a tournament
setting, crashes would be treated as losses and all ver-
sions of the bot would have lower win percentages than
presented in Table 1. For the purpose of this thesis,
however, it is assumed that crashes are not related to
the approaches being compared, and therefore excluded
from the experiments. Draws occur on the bot ladder
when, after 1 hour of gameplay, neither player has won.
Generally, when this occurs, one of the players has essen-
tially won the game, but has not been programmed to
scout the full map for any remaining opposing buildings
to properly finish the game.

Overall, Table 1 shows that MCTS gives a perfor-
mance improvement, with respect to win and loss per-
centages, over the scripted approach to tactical reason-
ing. The combat model based on Lanchester’s Square
Law improves the performance of MCTS even more.
Adding MAST to the Playout Policy of MCTS seems
to increase the win percentage. Because other bots on
the ladder can get disabled, enabled, or updated, the
ladder is not a static environment, and such changes can
also affect the percentages. The ELO ratings shown in
Table 2 are less affected by these changes in the test
environment. In Table 2, the peak ELO is the highest
rating that a version obtained throughout its time on the
ladder. The final ELO is the ELO rating that the bot
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Table 3: MaasCraft Win Percentages Per Map

Version (3)Tau Cr. (4)Andro. (4)Pyth.

0 3 21.36% 21.67% 10.42%

0 7 34.00% 29.58% 30.36%

0 10 52.54% 37.18% 36.36%

0 12 54.76% 42.42% 42.42%

Table 4: MaasCraft Win Percentages Vs. Racine

Version Vs. Protoss Vs. Terran Vs. Zerg

0 3 0.0% 0.0% 0.0%

0 7 12.5 ± 10.25% 32.5 ± 14.52% 0.0%

0 10 15.0 ± 11.07% 40.0 ± 15.18% 0.0%

0 12 15.0 ± 11.07% 45.0 ± 15.42% 0.0%

had on the date in the last column. This table shows
similar changes to Table 1 for the first three versions of
the bot. It shows that adding MAST in the last ver-
sion does not have a significant impact. Table 3 shows
the win percentages that MaasCraft achieved on the
three different maps that were used on the bot ladder
(Tau Cross, Andromeda and Python). The number in
front of a map name indicates the number of players
that can theoretically play on that map, and is generally
an indicator of map size. On maps for fewer players, it is
easier to scout and early-game aggressive strategies are
more likely to succeed. This is indeed reflected in Ta-
ble 3, where the 3-player map is the only map on which
versions of MaasCraft achieved win percentages over
50%.

Finally, Table 4 shows the win percentages achieved
by all four versions of MaasCraft, against the three
different races controlled by the Racine script, and the
corresponding 95% confidence intervals. A number of ob-
servations can be made in this table. It shows that none
of the versions of MaasCraft were every able to beat
the Racine script when it controlled the Zerg race. It is
likely that the specific strategy that the Racine script
uses when playing Zerg is particularly strong against
MaasCraft’s strategy.

When playing against the Protoss and Terran races,
there is a large improvement in performance adding
MCTS, going from version 0 3 to 0 7. Against the Pro-
toss race, version upgrades other than adding the initial
MCTS algorithm did not make a significant difference.
Against the Terran race, the other version upgrades seem
to have a larger influence, but still require a larger sam-
ple size before this can be definitively concluded.

8 Conclusions & Future Research
In this thesis, the MCTS algorithm has been shown to be
applicable to the tactical planning problem of an intel-
ligent agent playing the game of StarCraft. An abstrac-

tion of the game state has been presented that reduces
the complexity of the problem enough for the algorithm
to perform better than a scripted approach, even under
harsh time-constraints. In order to deal with durative
and simultaneous moves, the game tree contains book-
keeping nodes that only memorize which moves have
been selected but do not advance the game state fur-
ther.

The algorithm has been shown to achieve a gain in
performance, measured by win percentage and ELO rat-
ing, compared to a simple scripted approach. Addition-
ally, an improved combat model based on Lanchester’s
Square Law has been shown to increase the performance
of the MCTS algorithm further, when applied in the al-
gorithm’s Tree and Playout policies. No conclusive em-
pirical evidence could be found whether MAST improves
the playout, though the trend suggests it might have a
positive effect.

It is difficult to judge the performance of MCTS
for tactical reasoning with respect to other proposed
solutions. Most of the effort during development of
MaasCraft has been spent on the MCTS algorithm for
tactical reasoning, meaning that other aspects of the bot,
such as its strategic reasoning, are likely to be weaker
than those of other bots on the bot ladder and in com-
petitions. This has to be addressed, before a fair com-
parison of the tactical reasoning capabilities can be made
with the strongest bots.

Ideas for future research that address these areas can
be found in [1, 29], where an overview of existing work
and open questions in RTS game AI can be found. The
MCTS algorithm itself can still be improved as well.
Some of the time management strategies described in
[30] can be applied to reduce the time used by MCTS if
enhancements to other aspects of the bot require more
time per frame. A decay factor can be applied to reuse
the search tree continuously [31], as opposed to recon-
structing a completely new search after a set number of
frames. The combat model based on Lanchester’s Square
Law can be extended, for instance to better model the
effect of different weapon ranges or heterogeneous army
compositions [32, 33]. Many proposed extensions for the
model remove the ability of deriving an analytical solu-
tion though, which makes the use of numerical methods
necessary, and influences the simulation speed.
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