Strategic Features for General Games

Cameron Browne, Dennis J. N. J. Soemers, and Eric Piette
Department of Data Science and Knowledge Engineering (DKE)
Maastricht University, Bouillonstraat 8-10
Maastricht, 6211 LH, The Netherlands

Abstract
This short paper describes an ongoing research project that requires the automated self-play learning and evaluation of a large number of board games in digital form. We describe the approach we are taking to determine relevant features, for biasing MCTS playouts for arbitrary games played on arbitrary geometries. Benefits of our approach include efficient implementation, the potential to transfer learnt knowledge to new contexts, and the potential to explain strategic knowledge embedded in features in human-comprehensible terms.

Introduction
The Digital Ludeme Project\(^1\) is a five-year research project, recently launched at Maastricht University, that aims to model the world’s traditional strategy games in a single, playable digital database. This database will be used to find relationships between games and their component ludemes,\(^2\) in order to develop a model of the evolution of games throughout recorded human history and to chart their spread across cultures worldwide. This paper describes a new approach to defining strategic features for general games that we are implementing in order to achieve the project’s aims.

Statement of the Problem
While there exists substantial archaeological evidence for ancient games (i.e. those played before 500AD) the rule sets explaining how these games were actually played are typically lost; our modern understanding of ancient and early games is based primarily on modern reconstructions that have proved to be less than reliable (Murray 1952).

A key challenge in this project will be to evaluate reconstructions of ancient rule sets and to improve them where possible. The general game system we are developing for this project, called LUDII, must therefore be able to:
1. Model the full range of traditional strategy games.
2. Play them at a competent human level.
3. Evaluate rule set reconstructions for: a) historical authenticity, and b) quality of play.
4. Improve rule set reconstructions where needed.

We aim to model the 1,000 most influential traditional games throughout history, each of which may have multiple interpretations, each of which may require hundreds of variant rule sets to be tested. This is therefore not just a mathematical/computational challenge but also a logistical one, as LUDII may need to be able to learn to play and evaluate up to a million candidate rule sets over the project’s five years.

This paper outlines work-in-progress for achieving this ambitious goal, through the self-play learning of simple lightweight features that embody strategic knowledge about the games being modelled. The features we propose are geometry-independent, facilitating their transfer to new contexts, and represent basic strategies that may be understood and explained in human-comprehensible terms.

Geometric Piece Features
The LUDII general game system employs Monte Carlo tree search (MCTS) (Browne et al. 2012) as its core method for AI move planning, which has proven to be a superior approach for general games in the absence of domain-specific knowledge (Finnsson and Björnsson 2010). While MCTS performance can vary significantly if strictly random playouts are used (Browne 2013), the reliability of Monte Carlo simulations can be improved by biasing playouts with domain-relevant features.

There is a significant amount of prior research that describes the use of local features or patterns for game-playing agents tailored towards a specific game. Some of the most common approaches for generating features are:
- Manually constructing features using expert knowledge. This was, for example, done by Gelly et al. (2006) for the game of Go, and by Sturtevant and White (2007) for the game of Hearts.
- Exhaustively generating all possible patterns up to a certain restriction (often limited to, e.g., areas of 3×3 cells). This was, for example, done by Gelly and Silver (2007) for the game of Go, and Lorentz and Zosa IV (2017) for the game of Breakthrough. Sturtevant and White (2007) also exhaustively generated combinations (for instance pairs, triples, etc.) of the manually selected features for the game of Hearts as described above.
- Supervised learning based on databases of human expert games. This has been particularly common in the game

\(^1\)Funded by a €2m ERC Consolidator Grant (http://ludeme.eu).
\(^2\)Units of game-related information (Borvo 1977).
of Go (Enderton 1991; Stoutamire 1991; van der Werf et al. 2003; Bouzy and Chaslot 2005; Stern, Herbrich, and Graepel 2006; Araki et al. 2007; Coulom 2007).

Other approaches include Gradual Focus (Skowronski, Björnsson, and Winands 2009), a genetic programming approach to find useful patterns (Hoock and Teytaud 2010), and the use of deep convolutional neural networks for learning relevant features through self-play (Silver et al. 2016).

2. An action pattern

3. The game definition maintains a unique index for each type of
Local vs Global Patterns
Patterns may be defined as either:

- **Relative**: Apply to all valid anchor locations across the board (taking null locations into account).
- **Absolute**: Apply only to the specified anchor location.

For convenience, the number of valid rotations and reflections for each pattern may also be specified, so that all possible instances of a given pattern may be generated across the board from a single description.

Reactive vs Proactive Patterns
We distinguish between reactive patterns that trigger actions directly in response to the previous player’s last move, and proactive patterns that can trigger actions anywhere across the board regardless of the previous player’s last move. This distinction is similar to the distinction between “responsive” and “non-responsive” patterns used in (Silver et al. 2016).

For example, the bottom row of Figure 4 shows the Hex pattern described earlier in Figure 1 (left) and a reactive pattern that describes this situation (middle). The top row shows a proactive pattern that encourages Hex players to play two disjoint steps away from existing friendly pieces. For clarity in the diagrams, friendly pieces are denoted as white disks and enemy pieces as black discs (the last move made is dotted). White dots indicate empty cells, edges between elements indicate cell adjacency, and green “+” symbols indicate the preferred action triggered by each pattern. The rightmost column of Figure 4 shows how these patterns map easily from the hexagonal grid to the square grid.

Implementation
The LUDII system and associated feature mechanisms are implemented in Java 8. Internal game states are defined using a custom BitSet class, called a ChunkSet, that compresses the required state information in the minimum number of bits, based on each game’s definition.

Feature Instantiation
As each game is loaded, an instance of every possible valid rotation, reflection and translation is pre-generated once for all component features \(f_x \) of that game’s optimal feature set \(F \), including combinations of valid element types within each feature. Each feature definition can therefore generate hundreds of instances.

Each instance is defined using the same custom BitSet class as the game state. Hence, each feature instance can be matched to the given game state efficiently using bitwise parallel operations, such that only a few bitwise operations need to be applied per instance match test, regardless of the feature’s complexity.

Feature Application
Feature sets are applied to bias MCTS playouts as follows:

1. For each player move, all legal moves are generated and initialised with equal probability of being selected.
2. Each reactive feature instance corresponding to the previous player’s last move is then checked for a match to the current game state, and if a match is detected then

There may be more than one opponent.

Chunk sizes are set to the lowest power of 2 to avoid issues with chunks straddling consecutive long member variables.
the feature’s weight is added to the probability of the feature’s action being selected (note that feature weights can be negative for detrimental moves).

3. Each proactive feature instance is then applied across the board and checked for a match to the current game state, and if a match is detected then the feature’s weight is added to the probability of the feature’s action being selected.

4. The move to be made is then selected randomly according to the resulting biased distribution.

Features can similarly be used in other parts of MCTS, such as its selection phase. Note that reactive features are much more efficient to apply than proactive ones, as only those patterns relevant to the previous player’s last move need be tested. We therefore seek to generate reactive features, and to replace proactive features with their reactive equivalents, where possible.

Feature Generation

Manually generating features using expert knowledge, or extracting them through supervised learning from human expert games, are not suitable solutions for the current task in which a wide variety of unfamiliar games must be supported. Exhaustive generation of features can be done more easily, but has clear drawbacks due to the massive volume of features it can generate.

One advantage of describing games by their component ludemes is that these may be exploited to generate a plausible set of candidate feature patterns based on the specified rules and equipment. Such patterns may not be suitable features in and of themselves, but represent “minimum” patterns which must be present in every feature – for example, every Hex or Go feature must contain an empty “to” action location – allowing significant reductions in the number of possible patterns to be generated. For many games, this kind of knowledge can be extracted automatically from ludemes.

The subsequent fine-tuning of features to obtain the optimal feature set F for a given game is still a work-in-progress. Suffice it to say that frequent pattern mining (Aggarwal and Han 2014) approaches to iteratively building features from large numbers of randomly generated self-play games has not proved effective. Learning feature sets against a random opponent can have disastrous – and sometimes amusing – results in the unexpected behaviours that can thwart the random player. There does not seem to be any escape from evaluating feature sets using more time-consuming but realistic tests against intelligent AI opponents, with MCTS as the baseline yardstick.

Features and Strategies

An attractive aspect of the proposed approach is that learnt features have the potential to encode simple strategies for the games to which they apply. For example, the features shown on the top row of Figure 5 encourage the player to make lines of four pieces of their colour, while the features shown on the bottom row encourage the player to not make lines of three pieces of their colour (the red “−” symbols indicate negative weights that discourage such actions).

The features shown in Figure 6 encourage the player to form groups of three pieces of their colour, by encouraging singleton pieces to grow in any direction then discouraging growth beyond group size 3. Similarly, the features shown in Figure 7 encourage the player to form long, thin groups of their pieces, by encouraging singleton pieces to grow in any direction, then encouraging friendly pairs to extend at the ends but discouraging growth at the common points adjacent to both pieces (which would create shorter, thicker groups).

Feature Explanation

An additional benefit of the ludemic model for games is that features applicable to a given game may be readily transferred as candidate features for related games defined by similar ludemes. Any feature that has proved relevant for a given context is a good starting point for similar contexts.

Further, we can potentially invert the causal relationship between ludemes and features to reverse engineer comprehensible explanations for the learnt strategies that optimal feature sets represent, by determining which ludemes are responsible for given features. This relationship between a game’s ludemes and its derived features is further strengthened by the fact that initial candidate feature sets are derived directly from the game’s ludemic description during feature generation process.

Each ludeme in the LUDII Ludeme Library corresponds to a Java class with an appropriate name, providing a source of convenient plain English captions for learnt concepts. And even if the ludeme names do not provide sufficient expla-
nation in themselves, they provide hints for further post-processing steps to find geometric relationships within the feature patterns. It is plausible that simple descriptions such as “make lines of 4” or “make groups of 3” may be derived from such feature sets. Implementing such mechanisms for explainable AI in the context of strategy learning for general games will be a key focus of future work.

Conclusion

Lightweight features based on geometric piece patterns have a number of advantages for our work on the Anonymous Project. They improve MCTS playing strength, map readily to other geometries, encode simple strategies, can be associated with the underlying ludemic descriptions of games, and have the potential to help explain learnt strategies in human-comprehensible terms. We will continue developing and testing this approach as the LUDII general game system matures to support an increasing range of game types, and investigating the automated extraction and explanation of relevant strategies from such learnt features.

Acknowledgements

This research is part of the European Research Council-funded Digital Ludeme Project (ERC Consolidator Grant #771292) being run by Cameron Browne. We would also like to acknowledge the RIKEN Institute’s Advanced Intelligence Project (AIP), especially Kazuki Yoshizoe, for their generous support of prior research that led to this work.

References

Aggarwal, C. C., and Han, J., eds. 2014. Frequent Pattern Mining. Springer.