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Abstract. It is common practice in reinforcement learning (RL) re-
search to train and deploy agents in bespoke simulators, typically imple-
mented by engineers directly in general-purpose programming languages
or hardware acceleration frameworks such as CUDA or JAX. This means
that programming and engineering expertise is not only required to de-
velop RL algorithms, but is also required to use already developed algo-
rithms for novel problems. The latter poses a problem in terms of the
usability of RL, in particular for private individuals and small organi-
sations without substantial engineering expertise. We also perceive this
as a challenge for effective generalisation in RL, in the sense that is no
standard, shared formalism in which different problems are represented.
As we typically have no consistent representation through which to pro-
vide information about any novel problem to an agent, our agents also
cannot instantly or rapidly generalise to novel problems. In this posi-
tion paper, we advocate for a research agenda centred around the use
of user-friendly description languages for describing problems, such that
(i) users with little to no engineering expertise can formally describe the
problems they would like to be tackled by RL algorithms, and (ii) algo-
rithms can leverage problem descriptions to effectively generalise among
all problems describable in the language of choice.

Keywords: Environment Descriptions - Generalisation - Reinforcement
Learning.
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1 Introduction

Researchers in the field of reinforcement learning (RL) have largely converged
on a small number of common APIs for the development of benchmark domains
that are used to evaluate the performance of RL algorithms. New environments
are customarily written in general-purpose programming languages such as C++
or Python, and implement a Gym-based [22] API for learning algorithms to inter-
face with environments. There are variants on this approach, such as PettingZoo
[154] for multi-agent RL, but the general workflow remains similar.
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At a high level, we may distinguish roughly two categories of RL research.
On the one hand, there is research where the focus is on the development of new
and improved (modifications of) training algorithms, typically not focused on any
specific task. There may be a focus on certain categories of tasks (single-agent
RL, multi-agent RL, RL for domains with vision-based inputs, RL for partially
observable environments, RL for continuous action spaces, and so on), but exist-
ing and established frameworks with a suite of applicable domains are typically
used for empirical evaluations. Researchers typically aim to demonstrate a high
level of generality, by showing that an algorithm can effectively learn on a large
collection of different environments within such a suite, as opposed to only a
single environment. These environments are often games or other simulations,
with arguably relatively limited direct real-world impact outside of their use as
benchmarks for RL research. Examples of such suites of environments include
the Arcade Learning Environment [I3|87], ProcGen [25], SMACv2 [37], and the
DeepMind Control Suite [I52]. On the other hand, there is research in which
a single, concrete, high-impact “real-world” task is selected, and RL is used to
improve performance on that one task. Substantial engineering effort is often
dedicated towards implementing and optimising such a task for the purpose of
this research. This engineering effort often requires highly specialised knowledge
of, for example, programming for GPUs or other hardware accelerators, or of
the inner workings of deep learning (DL) and RL algorithms, such that the task
and its state and action representations can be implemented in such a way that
the existing DL and RL techniques can be applied to their fullest potential. Ex-
amples include research focused on applications such as resource balancing for
logistics [78], flight control for stratospheric balloons [12], compiler optimisations
[27U159], automated chip floorplanning [96], power grid management [I67], align-
ment of large language models with human preferences [I10J64], and magnetic
tokamak controllers [31].

While discussions on experimental methodologies and statistical analyses of
empirical evaluations in RL have been on the rise within the research community
[E3BIG0ITT3ISY], as well as discussions of how to select which environment(s) to
use in experiments [IT3J160], we see little to no discussion on how or by whom
tasks (or environments) are described or implemented in the first place. In a
recent position paper [I46], we argued that the standard assumption that envi-
ronments can be implemented (and heavily optimised) in general-purpose pro-
gramming languages, by engineers familiar with machine learning, (i) poses a
challenge to widespread adoption of RL for real-world use cases, and (ii) also
leads the research community at large to miss out on interesting research di-
rections with respect to generalisation and transfer in RL. While it may be
acceptable to invest substantial engineering resources for the implementation of
environments for large-scale projects with high potential impact, it impedes the
application of RL by smaller organisations or private individuals. We posit that
more widespread applications of RL will be greatly aided if the latter groups can
express their tasks in user-friendly domain-specific languages (DSLs) [95l8], or
even in natural language.
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Fig. 1: Orange boxes with dashed lines represent components that require sub-
stantial engineering or RL expertise. The green components can be provided by
users with little to no engineering expertise. (a) A depiction of the customary set-
ting in RL research. (b) The approach for which we posit that increased research
attention is warranted (Section . (c) User-friendly environment descriptions
may be written in a DSL, or in a natural language, where the latter approach
may or may not generate an intermediate DSL description. Image source: [146].

Once we adopt a methodology in which environments are represented in ex-
plicit forms that can be provided as inputs to an agent (e.g., DSL or natural
language snippets), we can also explore new forms of generalisation or transfer
in RL, where effective generalisation or zero-shot transfer to unseen environ-
ments may become feasible given sufficient understanding of the task descrip-
tions. Fig. [Ta] depicts the setting where the environment is implemented directly
in a general-purpose programming language, and Fig. [ID] depicts the proposed
settings, with Fig. providing three examples of how the translation from a
user-friendly environment description to a simulator may work. For tasks that
take place in the physical world, such as non-simulated robotics tasks, a descrip-
tion of the reward function can suffice, as hardware and the real world with its
laws of physics already dictate aspects such as the action space and transition
dynamics. However, even in these cases, the ability to automatically generate a
sufficiently accurate simulator from user-friendly descriptions would, in combi-
nation with sim-to-real transfer [I70], still be highly beneficial [166].

This paper is an extension of a previous position paper [146]. The primary
extensions consist of (i) a discussion of barriers to widespread adoption of RL
other than the one that is our main focus (Section [5)), and (ii) a detailed descrip-
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tion of the research agenda we envision following from our position (Section @
Furthermore, other sections throughout the paper have been updated to provide
additional context, examples, and to reflect and relate our work to other recent
developments in the field, such as the Ludax framework [I58] and other related
position papers [127/17I52].

2 Background

This section provides background information on (partially observable) Markov
decision processes [55] and Markov games [161] (Subsection[2.1)—two frequently
used formalisations of sequential decision-making problems, which we argue
users should be able to describe in more accessible languages than programming
languages—and deep reinforcement learning (Subsection .

2.1 Markov Decision Processes & Markov Games

A Markov decision process (MDP) M = (S, A, P,p) is a formal description
of a single-agent sequential decision-making problem, in which S denotes the
state space, A the action space, P : § x A x § — [0, 1] a function that defines
transition probabilities, and p : S x A x § X R a reward function. More precisely,
0 < P(s' | s,a) <1 gives the probability of observing a transition from a current
state s € S to a successor state s’ € S after executing an action a € A, and
p(r | s,a,s’) denotes the probability of observing a real-valued reward r € R after
the same event. In some MDPs, it may be the case that only certain subsets of
the full action space A are legal in certain states.

The behaviour of an agent may be described as a policy 7 : S x A — [0, 1],
such that 0 < 7(a | s) <1 denotes the probability with which the policy selects
an action a € A whenever the current state is s € S. At discrete time steps
t = 0,1,..., the agent observes the current state S; € S, samples an action
Ay ~ 7(- | S¢) from its policy =, transitions into a successor state Siii ~
P(- | St, Ay), and receives a reward R; ~ p(S, At, Sty1). The most common
objective is to select actions such that the returns Gy are maximised, where
Gy = Yo ¥Ry r11 denotes sum of discounted rewards collected from time
t onwards. Temporally distant rewards are discounted, relative to short-term
rewards, by the discount factor 0 <~ < 1.

The state value function V™ : S — R gives the expected returns when action
according to a policy 7 from any input state s onwards: V™ (s) = E; [G; | St = s].
Similarly, the state-action value function Q™ : S x A — R gives the expected
returns of executing an input action a in an input state s, and sampling any
subsequent actions from m: Q™ (s,a) = E, [G | St = s, Ar = a.

Partially observable Markov decision processes (POMDPs) additionally fea-
ture an observation space O, and a mapping ¢ : S — O from states to observa-
tions. In a POMDP, the agent cannot necessarily observe the current state S;,
but only an observation O; = ¢(S;), where it is possible for multiple different
states to map to the same observation.
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The concept of Markov games may be viewed as a generalisation of (PO)MDPs
for multi-agent settings [82]. In a Markov game, each of k > 1 players (or agents)
has its own action space from which to select actions, and its own reward func-
tion. Transition probabilities between pairs of states are defined over the joint
action space of all players. This paper uses the term environment to refer to prob-
lems that may be tackled by RL, regardless of whether they may be (PO)MDPs
or Markov games.

2.2 Deep Reinforcement Learning

One of the main goals in reinforcement learning (RL) [I51] research is the devel-
opment of algorithms that can automatically learn strong policies from experi-
ence gathered within a (PO)MDP or Markov game. Tabular RL methods learn
distinct state-action values or probabilities for every individual state-action pair
in § x A. This is only feasible in relatively small problems, and often wasteful in
terms of data efficiency due to the lack of generalisation between related state-
action pairs. RL methods with function approzimation address these issues, by
training function approximators that use features of states and/or actions, rather
than enumerating the complete space. State-action pairs that are closely related
to each other may be expected to have similar features, allowing for improved
data efficiency through generalisation. One of the most popular and success-
ful forms of RL with function approximation is deep RL, in which deep neural
networks (DNNs) [74] are used as function approximators.

3 Description Languages for Environments

Subsection [3.1] describes the established practice where RL research is performed
using environments that have been implemented, conforming to a standardised
API such as the Gym API [22], in general-purpose programming languages or
more specialised frameworks for hardware accelerators such as GPUs. It identifies
potential issues that may arise when the entire research community focuses solely
on such environments. As an initial step towards more user-friendly descriptions,
Subsection discusses the use of DSLs for describing environments for use in
RL research. Subsection [3.3]explores the possibility of using natural languages to
define environments—arguably one of the most user-friendly language classes.
Finally, Subsection [3.4] presents the central position of this paper: a call for
more (research attention for) benchmarks in which environments are described
in DSLs or natural language.

3.1 Defining Environments in Programming Languages

Outside of cases where RL is applied directly in the physical world, such as
some work in robotics [85], it is customary to implement the environments
used for RL research in programming languages such as C++ or Python. There
is also a recent trend of using more advanced toolkits or libraries, such as
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CUDA or JAX [20], to enable the environments themselves—and not just DNN
forward and backward passes—to make efficient use of hardware accelerators
[28ATIRITHI7TTIA2I5TIETI0TRITIR]. The latter approach can provide dramatic
speed increases, but also imposes additional constraints on programming style
and requires more specialised and advanced engineering skills.

Most developers of RL environments have converged to the API popularised
by OpenAl Gym [22]. This API requires developers to implement:

— A definition of the observation space. For any state that an agent may ever
reach in an environment, it will receive an observation from this space as
input. The observation space may, for example, be a discrete set of integers,
each of which uniquely identifies one element of the state space S, or it may
be subset of R for some dimensionality d, such that every state is described
by a d-dimensional real-valued feature vector.

— A definition of the action space A. It is typically assumed that agents must
select any one element from this space as their action at each time step.

— A reset function, which resets the environment to an initial state.

— A step function, which takes an action from A4 as input, transitions from a
current state s € S to a successor state s’ € S, and returns a real-valued
reward 7 and an observation of s’ (alongside several auxiliary variables). In
this function, programmers essentially implement the transition and reward
models P and p. This is typically done implicitly: the function usually im-
plements a procedural algorithm that generates s’ and r in a manner that
ends up being consistent with the probabilities defined by P and p, without
explicitly defining and sampling from the full distributions.

3.2 Domain-Specific Languages for Environments

A potential alternative to the standard practice of describing environments in
general-purpose (or more advanced and complex hardware acceleration frame-
works) is to use DSLs to describe sets of environments. This approach still re-
quires significant engineering effort to develop a compiler that can translate valid
descriptions from the DSL to a runnable simulator with an API for (learning)
agents. However, once this compiler has been built, users with little to no pro-
gramming experience may—depending on the complexity and user-friendliness
of the DSL in question—use it to describe new environments that fit within the
overarching domain supported by the DSL. Note that the requirement for a com-
piler to be implemented suggests that it would only ever be reasonable to use
a DSL for sets of multiple environments, but never for a single environment. If
there is only a single environment of interest, it would likely be easier to directly
implement that environment itself in a programming language.

Numerous examples of DSLs for describing sequential decision-making prob-
lems already exist, though their adoption as benchmarks within the RL com-
munity is restricted compared to benchmarks such as the Arcade Learning En-
vironment [I3I87] or the DeepMind Control Suite [I52], which are not based
on DSLs. Examples include the Planning Domain Definition Language (PDDL)
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[93] for planning problems, and the Stanford Game Description Language [83/44],
Ludi [24], Toss [63], the Video Game Description Language [134/136], Regular
Boardgames [68], Ludii [115], Stratega [114], Griddly [9], MiniHack [I33], and
Ludax [158] for various ranges of games. PDDLGym [140] provides Gym envi-
ronment wrappers around PDDL problems.

As an example, we provide a description of the game of Tic-Tac-Toe in the
DSL of Ludii below. Note that some rules—such as players moving in turns, or
the game ending in a draw when neither player can move—are not explicitly
stated, because these are default settings and can therefore be omitted in this
language. Games that deviate from these defaults can be described by explicitly
including rules where appropriate.

Ludii Game Description Example

(game "Tic-Tac-Toe"
(players 2)
(equipment {
(board (square 3))
(piece "Disc" P1)
(piece "Cross" P2)

i)
(rules

(play (move Add (to (sites Empty))))

(end (if (is Line 3) (result Mover Win)))
)

3.3 Describing Environments in Natural Language

While DSLs may already be considered a more user-friendly alternative to general-
purpose programming languages [958] for describing environments, natural lan-

guage would be even more accessible to a wider userbase. Here, we provide an

example of what a natural language description of the game of Tic-Tac-Toe

might look like:

Natural Language Description Example

The game of Tic-Tac-Toe is played by two players on a grid of 3x3 square
cells. Players take turns drawing their symbol—a circle for the first player,
and a cross for the second—in an empty cell of their choice. The game ends
in a win for a player if that player completes an orthogonal or diagonal line
of three instances of their symbol. The game ends in a draw if the board
is filled up with neither player achieving their win condition.

J

Although the state of the art of large language models (LLMs) is highly
impressive [I71], there are still concerns surrounding reliability and correctness
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[76]. In particular, we envision that ambiguities typically present in natural lan-
guages, as well as the tendency for humans to underspecify task descriptions (e.g.,
rules of games), will present substantial challenges that require further research.
Recently, [2] demonstrated promising initial results for an LLM automatically
generating executable environment code based on natural language descriptions,
but it still requires an expert human in the loop who is able to interpret the
generated code and provide feedback on potential mistakes. In the short term, it
may be more realistically feasible to use a combination of natural language and
DSLs, where an LLM first translates a natural language description to a DSL-
based description [34[T09/T76], and a user can inspect the generated description
and make corrections if necessary before it is compiled into a simulator. In the
long term, if LLMs can be made sufficiently reliable, natural languages would
likely be the most accessible modality for describing environments.

3.4 Research Focus on Description Languages for Environments

Before formally stating the central position of this paper, we make two core as-
sumptions relating to the user-friendliness of DSLs and natural languages (As-
sumption , and the desirability of this user-friendliness (Assumption .

Assumption 1 Defining environments, such as (PO)MDPs or Markov games,
in domain-specific languages (DSLs) or natural languages can be more user-
friendly than defining them in general-purpose programming languages.

Increasing user-friendliness and lowering barriers to entry is a well-established
potential motivation for the use of DSLs [95l8]. Note that there may also be
other reasons for using DSLs, and there can be DSLs that do not substantially
lower barriers to entry: this depends on the design of the DSL in question. For
example, the logic-based Stanford Game Description Language [83/44] arguably
still requires substantial technical expertise and writing games in it may be
considered error-prone due to the large file size required for many interesting
games. In contrast, allowing for clear and succinct descriptions that are easy
to read and write was an explicit design goal for Ludii’s description language
[115]. Likely in no small part due to the language’s level of accessibility, Ludii
has amassed a library of over 1400 distinct official game descriptionsﬂ including
third-party contributions from game designers with little or no programming
experienceEI

In the case of natural languages, if any concerns around ambiguities and
underspecification of environments can be adequately addressed, we see little
reason to doubt that many users would indeed find them more accessible than
programming languages. If procedures translating natural language descriptions
directly into executable simulations cannot be made sufficiently reliable, a po-
tential solution may be to use DSLs as an intermediate step. Users could first

3 |https: / /ludii.games /library.php
4 |https://ludii.games /forum /forumdisplay.php?fid=23
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describe their tasks in natural languages, and they would ideally only have to
verify or fix small issues in automatically generated descriptions in a user-friendly
DSL afterwards.

Assumption 2 Enabling environments to be defined in more user-friendly ways
is desirable.

First, we will acknowledge that lowering the barrier to entry for defining en-
vironments is not necessarily always of importance. For example, when RL is
applied to an individual, specific domain with a high degree of scientific, societal,
economic or other form of impact, it will often be worth investing substantial en-
gineering effort into the environment definition. However, running such projects
tends to be restricted to groups with direct access to RL experts.

A survey among Al engineers, Al designers, and RL engineers from AAA
video game studios, independent developers, and industrial research labs—most
of which do have direct access to a substantial amount of engineering expertise—
revealed, among other concerns, an overreliance on engineering support, and
difficulties in designing tasks for RL agents, as challenges for the adoption of
RL and other AT techniques in video game development [58]. While not focused
on RL (but, rather, Al in general) or environment descriptions, a recent study
by [I41] reveals a substantial disconnect between the technical know-how that
AT designers expect users will have, and what they actually tend to have, as a
core barrier to adoption of Al in practice. These studies point to the relevance
of improving the user-friendliness of any aspect of the RL (or any AI) pipeline.

If we wish to democratise the use of AI [I38] to the extent that users with
little expertise in RL—or even programming—can apply it to their problems of
interest, enabling environments to be defined in more user-friendly ways would
be a requirement. Outside of RL, in the landscape of generative artificial intel-
ligence (AI), substantial value is generated not necessarily just by the models
themselves, but also by the release of user-friendly tools and interfaces to ac-
cess the trained models. Famous examples include OpenAT’s ChatGPT [108]
and DALL-E 2 [120], Stability AI’s models and interfaces for audio [147], image
[117], and video [16] generation, Midjourneyﬂ and Gradio apps [I]. We envision
that a comparable workflow for RL would have a convenient interface for a user
to describe their problem, after which a policy—ideally without requiring any
further training (see Section [f)—would be able to start taking actions and solve
the problem. In addition to easing the deployment of RL by non-engineers for
their tasks of interest, domain experts of novel problems would also become able
to create interesting new benchmark domains for RL researchers—similar to how
[35] aimed to improve accessibility and facilitate further research for dynamic
algorithm configuration. This leads to our position as follows:

% lhttps://www.midjourney.com/
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The RL research community should place greater focus on benchmarks
with environments defined in user-friendly DSLs or natural languages.

Two clear lines of research that follow from Assumptions [I] and [2] would be
the design of user-friendly DSLs for relevant application domains, as well as
generating reliable translations from natural language to exectuable simulators.
However, beyond these challenges related to getting simulators to run in the
first place, we also argue that they should be used extensively as benchmarks in
general RL research, and that existing benchmarks—with environments imple-
mented directly in general-purpose programming languages—are not sufficient
to evaluate how different algorithms and approaches might perform when later
applied to environments defined in more user-friendly languages.

For example, consider the common assumption that the full action space A
can be defined in advance, as described in Subsection While standardised
APIs such as OpenAl Gym’s [22] have undoubtedly aided and accelerated RL
research, there is a risk that convergence of the community on such an API
may have entrenched this assumption in the community. The ubiquity of this
assumption may also be explained by its convenience in the context of deep
learning research. There exists some early deep RL work [124]72] where actions
were treated as inputs of neural networks—hence requiring separate forward
passes for every legal action to compute policies or state-action values. How-
ever, it quickly became common practice—especially after the work on Deep
Q-Networks by [99]—to treat actions as outputs. Requiring only a single DNN
forward pass per state greatly improves computational efficiency, at the cost of
requiring prior knowledge of the full action space.

In practice, the full action space (or a reasonably sized superset thereof)
cannot always be automatically inferred from environment descriptions written
in languages that prioritise aspects such as usability over support for robust
automated inference. In the relatively verbose, logic-based S-GDL [83144], this
is possible, and it is straightforward to build policy networks accordingly [49].
In contrast, in Ludii’s DSL, which is substantially more succinct and arguably
user-friendly [IT5], this does not appear to be feasible. The root of the issue is
that succinct descriptions of, for example, game rules, are generally descriptions
of procedures that may be used in any game state to generate the set of legal
actions for that particular game state. Determining the full action space of the
environment requires combinations of this information with an inference of what
the entire state space may look like, and this is challenging if the semantics of
the DSL are not readily available in a logic-based format. For example, the rule
that legal moves consist of players placing one of their pieces on any empty cell
in the game of Hex is formulated as (play (move Add (to (sites Empty))))
in Ludii’s DSL. In combination with knowledge of the size of the board (which is
defined in a different rule), knowledge that there are no rules that can ever change
the size of the board, and knowledge that there are no other rules for other types
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of moves, it is easy for humans to infer that the action space of this game must
be equal to the number of cells on the board. However, without explicit, direct
access to formal semantics of the many hundreds of keywords in Ludii’s DSL
[23], there is no clear way to make this inference in an automated and general
manner that works for any game described in the language. Practical attempts
at using deep learning with Ludii have therefore faced challenges such as action
aliasing, where a single output node of a policy network may end up getting
shared by multiple distinct legal actions [I43]—an issue that is rarely considered
possible in other deep RL research. [92] opted to forgo training a policy head
altogether, sticking only to a state value function, for games written in another
DSL. A similar problem surfaces in PDDLGym [140], which also requires careful
treatment of action spaces due to a mismatch between PDDL and the customary
assumptions about action spaces in RL.

These examples of multiple existing DSLs that conflict with the otherwise
common assumption of prior knowledge of the full action space is merely one
example of an important issue that is largely overlooked by current research.
It cannot be ruled out that other types of issues, which are not adequately
accounted for by the currently prevailing research methodologies, may surface as
the community shifts focus to more benchmarks based on environments defined
in DSLs or natural language.

4 Leveraging Environment Descriptions for
Generalisation in RL

The previous section argues for the relevance of developing RL techniques that
can operate on environments defined in DSLs or natural language, as opposed to
general-purpose programming languages, the importance dedicating substantial
research efforts on benchmarks following the same methodology, and potential
issues that may surface and are underexplored in the current research landscape.
However, in addition to potential issues, we also see opportunities. In particular,
succinct—but complete—environment descriptions may serve as a powerful tool
to improve (zero-shot) generalisation [66] across the set of all environments that
may be described in the language of choice.

4.1 Generalisation in RL

The most straightforward setting in RL [I51] is to have an agent interacting,
collecting experience, and training in a single environment for some time, and to
subsequently evaluate its performance in the same environment. This approach
has a high risk of producing agents that overfit, in the sense that they may
become overly reliant on spurious features, largely ignore state observations al-
together and simply memorise trajectories of states or actions, or otherwise be
incapable of handling even minor variations on the environment after training
[162U87IT6III6S].
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A popular category of RL research with a higher degree of generalisation
involves training agents on a subset of one or more closely-related environ-
ments, and evaluating them in the same set, or a different set of similar envi-
ronments [T6477/39/TII32I3RI62IT04/26/25/14994]. Different environments in this
case may be different levels of the same video game, or subtle variants of an
environment with, for example, modified background or foreground colours or
patterns, different values for the velocities of certain entities or other numeric
parameters, or different reward functions. Particularly in the cases of meta RL
[13740ITO3ITTITTHITT] and few-shot transfer learning [I53I73UT02J174], at least
a small amount of environment-specific fine-tuning prior to evaluation is also as-
sumed. While prior research collectively covers variation along all dimensions of
environments (variation in transition dynamics, variation in colours used in state
observations, variation in goals or reward functions, etc.), the work described
in each publication individually tends to be restricted to a smaller subset of
these dimensions. Research on transfer learning in RL [I53I73J174] is often simi-
larly restricted in scope [A6/129/T55IT42/43/9847I165]. [T44] used DSL-based en-
vironment descriptions for (zero-shot) transfer learning between different board
games, but only to a relatively small degree, where the transfer mechanism was
not automatically learnt. [I0[70] automatically identified mappings or transfer-
able features between games, but they used a low-level logic-based DSL, which
is arguably lacking in terms of user-friendliness.

Sim-to-real transfer [I70]—where policies are trained in simulation, but de-
ployed on robots in the physical world—is another major category of generalisa-
tion in RL. However, in this case, the need for generalisation is an unfortunate
reality due to inevitable differences between simulators and the real world. While
some degree of variation is inevitable in this setting, it is typically intentionally
kept as low as possible.

4.2 Leveraging Context for Generalisation

Theoretical work suggests that, in the worst case, strong assumptions on the
similarity between different environments are required for efficient generalisa-
tion to be possible: different environments must share an optimal policy [90].
One reason for the difficulty of generalisation to unseen environments, with-
out strong restrictions on the degree of variation, is that epistemic uncertainty
about relevant parameters of the current environment essentially turns the col-
lection of all environments that the agent may face into a partially observable
environment—even if the current state of each individual environment is fully
observable [45].

The notion of such a collection of environments, each of which may be iden-
tified by certain parameters (a context), of which some may never be used for
training and only appear at test time, may be formalised as a contextual [66//I4]
(PO)MDP or Markov game. In the formalism of [66], contexts may be as simple
as just the value of a random seed that is used for procedural level generation, or
take a more complex form such as a vector of parameters that describe important
properties of the environment. Contexts may or may not be observable to the
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agent(s), although the ability to observe contexts—which should also carry suf-
ficient information to enable disambiguation between environments—is required
to resolve partial observability [45] induced by epistemic uncertainty.

Research on multi-task RL often involves providing contexts as inputs to
agents, but these contexts tend to be far from full environment descriptions. For
example, [32] provide a single or a handful of numeric values as context, which
describe goal coordinates for robotic control tasks. It is common to provide short,
language-based instructions or hints to guide the agent [S8G/I7UTO7ITINTEIIRAS0UTIEH],
but such instructions do not (fully) describe the environment. In cases where
goals correspond to elements of the state space, universal value function approx-
imators [I35] can learn reusable skills and generalise by conditioning on goal
states. [(Ol122I123] prompt agents with demonstrations of interactions by ex-
perts for disambiguation between environments and in-context learning, which
is a form of context that is arguably more difficult to acquire than environ-
ment descriptions (requiring an environment-specific expert to have already been
trained), whilst simultaneously carrying less information (it does not reveal infor-
mation about any parts of the environment that are not explored in the demon-
stration). CARL [I4] extends several well-established RL benchmarks with con-
texts, but these contexts take the form of dictionaries specifying values for only
a handful of variables. [128] consider more elaborate task descriptions, but not
necessarily ones that fully specify complete environments. [I50] use a DSL to
prescribe policies that an agent should execute, as opposed to describing the
environment itself. [2I] leverage text from strategy guides to guide search-based
game playing agents, but these texts do not fully describe the environment, and
were not used to improve generalisation to unseen environments. The textual
descriptions provided to agents by [I72] are perhaps closest to what we propose,
although their descriptions are not sufficiently detailed to the extent that they
could be compiled into a correct simulator, and are not meant to serve as a
substitute for implementing the environment in a programming language.

4.3 Environment Descriptions as Context

If it is desirable to describe environments in succinct DSLs or in natural lan-
guage, as posited in Section then these descriptions may also be used to
improve generalisation by serving as contexts. Crucially, leveraging such descrip-
tions as context should not be viewed by peer reviewers as being a reduction in
generality, or being restricted to a particular DSL, as the general workflow of
providing environments in such a language is arguably more accessible and more
general than using a programming language for many potential end users. An
important property of such environment descriptions is that they come from a
shared language, and it should be possible for humans as well as software to
generate novel environment descriptions in the same language. We cannot only
generate contexts from environments, but also generate environments (in the
form of fully executable simulators) from contexts. From the researchers’ point
of view, this is valuable as it makes environments easily controllable and enables
a wide variety of evaluation protocols [66]. From the learning agent’s point of



14 D.J.N.J. Soemers et al.

view, this property may also be valuable in that a program could actively learn
about the description language that is used by procedurally generating new de-
scriptions [24yT57], translating them into executable simulators, and learning in
them—effectively forming their own curriculum of environments to learn from
[B3TL57II32/125].

Furthermore, it could be argued that contexts that completely describe an
environment—to the extent that they could be translated into executable simulators—
are likely to be a prerequisite for unrestricted, zero-shot generalisation in RL
[56]. Consider the generalisation abilities of humans. In some cases, humans can
effectively generalise to unseen situations without relying on explicit task de-
scriptions, but in others they cannot. For example, if a human plays a new video
game for the first time, in which there is something that looks like fire, they can
infer that they should likely avoid the fire—based on their related experience in
the physical world and other video games. This relies on an implicit assumption
that fire in this particular video game works similarly to how it works in other
games, or in the real world, which may be incorrect. If a human is faced with a
brand new board game, they cannot be expected to play it well if the rules of
the game are not explained. Once the rules are explained, they may be able to
play well immediately—based on their experience with related board games and
ability to reason—without any direct experience with the game in question.

5 Other Barriers to Widespread Deployment of RL

While the focus of this paper is on the challenge posed to widespread adoption of
RL by the customary use of programming languages for defining environments or
tasks, this is not the only barrier. The choice to focus on environment descriptions
and the languages in which they are described is due to our perception that this
aspect of RL research and deployment is hardly if ever discussed, whereas other
challenges are already more frequently acknowledged and discussed. However, we
do not expect these different challenges, or solutions to them, to be completely
orthogonal, and discuss how they may be related here.

5.1 Sample Efficiency and Computation Resource Requirements

Sample (in)efficiency and the requirement for substantial computation resources
are frequently cited as pervasive issues in deep RL, both in terms of feasibility
of deployment in the “real world” as well as research more generally [T06/4IT0T].
This issue motivates the recent trend of implementing simulators to be entirely
runnable on hardware accelerators via frameworks such as JAX, as discussed in
Subsection [3:1] When applicable, such an approach is highly effective at lowering
the barrier to entry in terms of hardware requirements for RL research. How-
ever, this style of implementing environments is arguably even more demanding
in terms of engineering expertise than using general-purpose programming lan-
guages, and is not directly helpful in terms of lowering the barrier to entry for
deployment of RL by users without such engineering expertise.
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In contrast, environments implemented in commonly-used DSLs [83I36115]
tend to have substantially lower simulation speeds than similar environments
implemented directly in programming languages like Java or C++. This only
exacerbates the need for computation resources—to make up for low simulation
speeds—if RL is to be successful in these environments. We do not view this as an
argument against using DSLs, but rather as an additional reason to focus even
more on improving sample efficiency of RL. Only focusing on (methodologies
for implementing) environments that permit running simulations at high speeds
would be an inadvisable form of tunnel vision, not unlike how the hardware
lottery |54] describes when certain algorithms receive more attention than others
depending on their compatibility with current hardware. Alternatively, it may
be possible to combine the high speed of hardware-accelerated programming
with user-friendly domain specific languages. The Ludax framework [I58] is a
recent, and to our knowledge first, example of a system that compiles user-
friendly game description languages (inspired by Ludii’s language [115]) into
native and hardware-accelerated simulation code via JAX. To what extent this
can be effectively replicated with other languages, domains other than board
games, or even simply a broader and more diverse set of board games than that
currently supported by Ludax, remains to be seen in future research.

5.2 Complexity of Agent Design, RL Algorithm Selection, and
Hyperparameter Tuning

Another challenge for the deployment of RL is lack of reliability (e.g., insta-
bility or high variance in performance levels over different random seeds), and
the degree to which RL performance depends on selecting the right algorithms,
optimisers, neural network architectures, hyperparameters, and other design de-
cisions for each specific environment [736JT05]. All of these are choices that
tend to require a substantial amount of RL and engineering expertise, or the
ability to run extensive experiments (e.g., grid searches for hyperparameters).
However, advances in meta RL [I3740/T03ITITTHIII] and AutoML (or Au-
toRL) [I12J100/48] may help lower this barrier to entry [81]. It is plausible that
the ability to provide succinct and information-rich environment descriptions as
context, as discussed in Section [} may also benefit these techniques.

6 Proposed Research Agenda

Building on the arguments and analyses from the previous sections, we propose
a research agenda centred around the use of user-friendly languages to describe
problems of interest (i.e., the environments in RL settings), with anticipated
opportunities, new avenues for research, and challenges regarding aspects such as
democratisation of the use of AI (specifically, RL), description language design,
generalisation and transfer, sample efficiency, and AutoRL and meta RL.

While it is not necessarily an exhaustive list, and relative importance of each
item may vary among different research and deployment contexts, we identify
the following list of desiderata for environment description languages:
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— User-friendliness: enabling end users with little programming or RL exper-

tise to describe their optimisation problems of interest, such that RL can
be applied to tackle them, is central to our proposed research agenda. This
implies that any languages used to these environments ought to be user-
friendly.

Complete and unambiguous environment specifications: there is a substantial
amount of work on providing some information about an environment as con-
text to aid decision-making [88I6197ITO7IT39T63I84UT28T50/T 725001479165,
but unless descriptions are complete to the extent that they can be compiled
into an executable simulator, they do not help alleviate the need for engi-
neers with programming and RL expertise. A key exception is when training
will be done in the real world (e.g., directly on physical robots), in which
case only specifying goals, objectives, or reward functions would suffice.
Generality and expressiveness: we remark that, as the orange boxes in Fig. [TH|
indicate, we still expect programming and RL expertise to be required in
some parts of the proposed workflow. In particular, such expertise will still
be required to build compilers for any designed language. Therefore, this
workflow will only pay off, in terms of democratisation of the use of RL,
if the same compiler can be re-used for multiple different (but presumably
related) tasks, all describable without engineering expertise in the same user-
friendly language. If there is only a single task of interest, a simulator for it
might as well be implemented directly in code. This suggests that a sufficient
degree of generality and expressiveness of the language is crucial: we ought
to be able to describe a variety of different tasks in the same language. In
practice, we expect that there may be tension between the desiderata of user-
friendliness and generality. While we have no quantitative evidence at this
point, our own practical experience, and conversations with others among
the general game playing research community in particular, suggest that
description languages that specifically target a restricted subset of domains
such as video games [I34J136] or board games [I115], using high-level keywords
specific to that domain, tend to be easier to use than lower-level (e.g., logic-
based) languages [83/44].

Computational efficiency: as discussed in Subsection high simulation
speeds are desirable to speed up training, in particular due to the lack of
sample efficiency in current RL techniques. Therefore, descriptions can ide-
ally be compiled into computationally efficient simulators.

Facilitation of procedural generation: especially in the case of highly expres-
sive languages, it may be infeasible to manually write enough descriptions to
provide sufficient coverage of the full space of all describable problems, which
can in turn impair the ability to train policies that effectively generalise in
a zero-shot manner across the space. For example, the t-SNE visualisation
[86] in Fig. [2| depicts how even a relatively large set of 1059 different board
games still leaves large uncovered areas in the underlying space, which may
be important to fill up with further example games for a model to effectively
learn the precise semantics of the game description language, and implica-
tions on effective playing strategy. This may be addressed by procedurally
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Fig. 2: A set of 1059 different board games, described in Ludii’s game description
language, reduced from a larger feature space [I16] to two dimensions via a t-SNE
embedding [86]. Image source: [148].

generating new tasks to fill up uncovered parts of the space [157]. The design
of the language and underlying problem representation can have a substan-
tial impact on how easy or difficult it is for, e.g., evolutionary algorithms to
navigate and construct suitable, novel elements of this space.

All of these desiderata should feature in evaluations of designed languages in our
proposed research agenda. For some aspects, such as measuring computational
efficiency of frameworks [67JI58] and (theoretically) analysing the expressive-
ness of environment and goal description languages [I56J68I80IT45T3T], this is
already commonplace. Other aspects, such as ease of use for humans or suitabil-
ity of representations for procedural content generation, are sometimes listed
as design considerations [I15], but lacking in terms of quantitative and objec-
tive evaluations in existing research (though there is some recent work in such
directions [121]).

When we have a user-friendly description language in which end users can
conveniently describe a variety of problems of interest, we still require an RL
solution to tackling these problems. For the same end users to be able to also
execute this step, we expect to require substantial advances in (i) generalisation,
and/or (ii) AutoRL and meta RL. Advances in generalisation (discussed in more
detail in Section E[) would enable us to pre-train an agent in a wide variety of
environments described in the chosen language, and have it automatically gener-
alise to novel problems described in the same language. In the case of successful
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zero-shot generalisation, this could even circumvent the need for training time
and other resources (e.g., hardware) for the end user. Similarly, advances in Au-
toRL and meta RL (discussed in more detail in Subsection would circumvent
the need for the end user to have the RL knowledge necessary to choose which
algorithm(s) to use, but would not alleviate the need for training resources such
as time and hardware.

7 Related Work

Mannor and Tamar [9] also caution against the excessive focus of the research
community on algorithms in existing benchmarks, with little attention for de-
ploying to novel problems, but they do not discuss ease of use, or user-friendly
environment description languages as a potential solution. Zhu et al. [I73| present
Pearl as a framework meant to facilitate users applying RL to their real-world
applications. However, this framework focuses on the design of agents, as op-
posed to environments, and does not alleviate the need for highly engineered
environment implementations.

Rodriguez-Sanchez et al. [I26] introduce RLang as a DSL that can be used
to provide background or expert knowledge on any aspect of an MDP. However,
they propose for such descriptions to be provided in addition to environment
implementations in general-purpose programming languages, rather than as a
replacement. Nevertheless, this could be an example of a DSL that could be
used for our proposed research agenda. Jothimurugan et al. [61] describe a DSL
that can be used to specify reward functions via, e.g., goals and constraints,
but no other aspects of the environment. In the specific case of robotics in the
physical world, natural language-based instructions for robots to follow [5] may
suffice to provide widespread, easy access, as there is no need for a simulator, but
this does not extend to many other (virtual) applications. Focusing specifically
on the problem of representing goals (rather than full MDPs or RL problems),
and not necessarily from the perspective of users who are not engineering or RL
experts, Davidson et al. also consider goal representations [29] based on programs
(essentially DSLs) [30] and natural languages, among other solutions.

While our position and proposed research agenda revolve around ideas such
as user-friendliness and democratisation of the use of RL, we still view these is-
sues largely from a technical angle by exploring how we may technically develop
techniques to facilitate broader use of RL. Other recent position papers explore
related ideas, such as the inherent value of application-driven AI research, rec-
ommended changes to peer review, hiring, and teaching policies in the machine
learning community, and legal and ethical considerations when shifting research
focus to real-world applications [127/52]. In another recent position paper, Blili-
Hamelin et al. [I7] argue to shift away from an excessive focus on Artificial
General Intelligence as a research goal, and rather be more specific and explicit
about research goals and the exact meaning of notions such as “generality.” Our
proposed research agenda is in line with this, as we argue to focus on restricted
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subsets of problems, and build agents that can generalise specifically within the
set of problems describable in any description language of choice.

8 Conclusion

The central position in this paper is to argue for a need for increased focus in
the reinforcement learning (RL) research community on benchmarks in which
environments are not implemented directly in general-purpose programming lan-
guages, but rather described in user-friendly domain-specific languages (DSLs)
or even natural languages. The core reason for this is to empower end users with
little to no programming or RL expertise to apply RL as a solution to their
optimisation problems of interest: they only need to be able to describe their
problems in the user-friendly language of choice. Furthermore, we see potential
for advances in (zero-shot) generalisation and transfer within the set of prob-
lems describable in any such language, by using the environment descriptions as
context on which to condition policies, value functions, and so on. We presented
a complete outline of the research agenda we propose, accounting for desiderata
and challenges such as user-friendliness, sample efficiency, and generalisation.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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